Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ling Shao, Xin Zhou and Jian-Xin Fang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: shaoling1999@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.003 Å R factor = 0.039 wR factor = 0.104 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(4-Chlorophenyl)-*N*-phenyl-5-(1*H*-1,2,4-triazol-1-yl)thiazol-2-amine

The title compound, $C_{17}H_{12}ClN_5S$, has been synthesized as a potent anticancer agent. The dihedral angle between the thiazole and triazole rings is 85.9 (2)°. There are intermolecular N-H···N and C-H···Cl interactions in the crystal structure.

Received 1 November 2005 Accepted 1 December 2005 Online 7 December 2005

Comment

The aminothiazole ring system has found application in drug development for the treatment of allergies, hypertension, inflammation, schizophrenia, and bacterial and HIV infections (Arcadi *et al.*, 1999). For example, aminothiazole BMS-387032 $\{N-[5-(\{[5-(1,1-dimethylethyl)-2-oxazolyl]methyl\}thio)-2-thiazolyl]-4-piperidinecarboxamide} has been selected to enter clinical development as an antitumour agent (Misra$ *et al.*, 2004). In the search for novel aminothiazole compounds with potent antitumour activities and as a continuation of our studies of thiazole molecules (Shao*et al.*, 2005), we have designed and synthesized such 2-aminothiazole compounds incorporating the 1*H*-1,2,4-triazole unit. In this paper, we report the crystal structure of the title compound, (I).

Fig. 1 shows the molecular structure of (I), which contains four planar subunits, namely the thiazole ring (*P*1), the substituted C5–C10 benzene ring (*P*2), the C12–C17 phenyl ring (*P*3) and the triazole ring (*P*4). The dihedral angles between *P*1 and *P*2, *P*2 and *P*3, *P*3 and *P*4 are 6.1 (4), 14.0 (3) and 85.9 (2)°, respectively. The C11–N5 and C3–N3 bond lengths in (I) (Table 1) are longer than the corresponding distances in 2-amino-4-(2,5-dichlorophenyl)-5-(1*H*-1,2,4triazol-1-yl)-1,3-thiazole [1.339 (3) and 1.402 (3) Å; Shao *et al.*, 2004].

In (I), the molecules are associated *via* $N-H\cdots N$ and $C-H\cdots Cl$ interactions (Table 2 and Fig. 2).

Experimental

 α -Bromo- α -(1*H*-1,2,4-triazol-1-yl)-4-chloroacetophenone (2.66 g, 10 mmol) and dry sodium thiocyanate (0.97 g, 12 mmol) were stirred in ethanol (25 ml) for 3 h at 323 K. A solution of aniline (0.93 g, 10 mmol) in ethanol (5 ml) was added in one portion and the reaction mixture was stirred for 8 h. The ethanol was distilled off, and ethyl

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram for (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.

acetate and water were added (80 ml). The aqueous phase was extracted twice with ethyl acetate, and the combined organic phases were dried with MgSO₄, and the solvent was removed in vacuo. The residue was then purified via column chromatography on silica gel (ethyl acetate/petroleum ether, 1:4 v/v) to afford (I) in a yield of 15% (m.p. 483 K). Analysis: C 57.56, H 3.52, N 20.03%; calculated for C₁₇H₁₂ClN₅S: C 57.71, H 3.42, N 19.79%. Spectroscopic analysis: ¹H NMR (DMSO, δ, p.p.m.): 10.629 (s, 1H, N-H), 8.858 (s, 1H, Tr-H), 8.369 (s, 1H, Tr-H), 7.717, 7.691 (d, 2H, p-Cl-Ph-H, J = 7.8 Hz), 7.462, 7.436 (*d*, 2H, *p*-Cl-Ph-H, *J* = 7.8 Hz), 7.411–7.023 (*m*, 5H, Ph-H).

Crystal data

$C_{17}H_{12}ClN_5S$
$M_r = 353.83$
Monoclinic, $P2_1/n$
$a = 9.5139 (18) \text{\AA}$
b = 13.681 (3) Å
c = 12.439 (3) Å
$\beta = 98.828 \ (3)^{\circ}$
V = 1599.9 (5) Å ³
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.903, T_{\max} = 0.928$ 8842 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.104$ S = 1.023279 reflections 221 parameters H atoms treated by a mixture of independent and constrained refinement

 $D_x = 1.469 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 3277 reflections $\theta = 2.2-26.4^{\circ}$ $\mu = 0.38~\mathrm{mm}^{-1}$ T = 294 (2) K Parallelepiped, colourless $0.24 \times 0.22 \times 0.20$ mm

3279 independent reflections 2449 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.031$ $\theta_{\rm max} = 26.4^{\circ}$ $h = -9 \rightarrow 11$ $k = -11 \rightarrow 17$ $l = -15 \rightarrow 15$

 $w = 1/[\sigma^2(F_0^2) + (0.0499P)^2]$ + 0.5099P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

S1-C3	1.740 (2)	N3-C3	1.415 (2)
S1-C11	1.7579 (18)	N4-C11	1.298 (2)
N1-C2	1.314 (3)	N4-C4	1.393 (2)
N1-C1	1.351 (3)	N5-C11	1.354 (2)
N2-N3	1.367 (2)	N5-C12	1.408 (2)
N3-C2	1.337 (2)		
C3-S1-C11	87.29 (9)	C11-N5-C12	128.22 (17)
C2-N1-C1	102.45 (17)	N2-C1-N1	115.7 (2)
C1-N2-N3	101.80 (17)	N1-C2-N3	110.7 (2)
C2-N3-N2	109.34 (16)	C4-C3-S1	112.29 (13)
C2-N3-C3	130.37 (18)	C3-C4-N4	113.33 (17)
C11-N4-C4	111.76 (15)		
N2-N3-C3-C4	78.5 (3)	C12-N5-C11-N4	-10.5(4)
C3-C4-C5-C10	-173.1 (2)	C11-N5-C12-C17	14.8 (3)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N5-H5\cdots N1^{i}$ C13-H13···Cl1 ⁱⁱ	0.83 (3) 0.93	2.17 (3) 2.87	2.990 (2) 3.605 (2)	170 (2) 137
	. 3 1	. 3 (**) 1		

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, y - 1, z.

The amino H atom was located in a difference Fourier map and refined isotropically, with the distance restraint N-H = 0.83 (3) Å. Other H atoms were placed in calculated positions, with C-H =0.93 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20172030).

References

Arcadi, A., Attanasi, O. A., Guidi, B., Rossi, E. & Santeusanio, S. (1999). Eur. J. Org. Chem. 11, 3117–3126.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Misra, R. N., Xiao, H. Y., Kim, K. S., Lu, S. F., Han, W. C., Barbosa, S. A., Hunt, J. T., Rawlins, D. B., Shan, W. F., Ahmed, S. Z., Qian L., Chen, B. C., Zhao, R. L., Bednarz, M. S., Ranadive, S. A., Sack, J. S., Tokarski, J. S., Pavletich, N. P., Lee, F. Y. F., Webster, K. R. & Kimball, S. D. (2004). *J. Med. Chem.* 47, 1719–1728.
- Shao, L., Hu, Y., Zhou, X., Zhang, Q. & Fang, J.-X. (2005). Acta Cryst. E61, m1269–m1271.
- Shao, L., Jin, Z., Liu, J.-B., Zhou, X., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, 02517–02519.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.