Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ling Shao, Xin Zhou and Jian-Xin Fang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
shaoling1999@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.104$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4-Chlorophenyl)-N-phenyl-5-(1H-1,2,4-triazol-1-yl)thiazol-2-amine

The title compound, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{~S}$, has been synthesized as a potent anticancer agent. The dihedral angle between the thiazole and triazole rings is $85.9(2)^{\circ}$. There are intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions in the crystal structure.

Comment

The aminothiazole ring system has found application in drug development for the treatment of allergies, hypertension, inflammation, schizophrenia, and bacterial and HIV infections (Arcadi et al., 1999). For example, aminothiazole BMS-387032 \{ N-[5-(\{[5-(1,1-dimethylethyl)-2-oxazolyl]methyl\}thio)-2-thia-zolyl]-4-piperidinecarboxamide\} has been selected to enter clinical development as an antitumour agent (Misra et al., 2004). In the search for novel aminothiazole compounds with potent antitumour activities and as a continuation of our studies of thiazole molecules (Shao et al., 2005), we have designed and synthesized such 2-aminothiazole compounds incorporating the $1 H-1,2,4$-triazole unit. In this paper, we report the crystal structure of the title compound, (I).

Fig. 1 shows the molecular structure of (I), which contains four planar subunits, namely the thiazole ring ($P 1$), the substituted C5-C10 benzene ring ($P 2$), the C12-C17 phenyl ring $(P 3)$ and the triazole ring ($P 4$). The dihedral angles between $P 1$ and $P 2, P 2$ and $P 3, P 3$ and $P 4$ are 6.1 (4), 14.0 (3) and $85.9(2)^{\circ}$, respectively. The $\mathrm{C} 11-\mathrm{N} 5$ and $\mathrm{C} 3-\mathrm{N} 3$ bond lengths in (I) (Table 1) are longer than the corresponding distances in 2-amino-4-(2,5-dichlorophenyl)-5-(1H-1,2,4-triazol-1-yl)-1,3-thiazole [1.339 (3) and 1.402 (3) Å; Shao et al., 2004].

In (I), the molecules are associated via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ interactions (Table 2 and Fig. 2).

Experimental

α-Bromo- α-(1H-1,2,4-triazol-1-yl)-4-chloroacetophenone $\quad(2.66 \mathrm{~g}$, $10 \mathrm{mmol})$ and dry sodium thiocyanate $(0.97 \mathrm{~g}, 12 \mathrm{mmol})$ were stirred in ethanol (25 ml) for 3 h at 323 K . A solution of aniline $(0.93 \mathrm{~g}$, 10 mmol) in ethanol (5 ml) was added in one portion and the reaction mixture was stirred for 8 h . The ethanol was distilled off, and ethyl

Received 1 November 2005 Accepted 1 December 2005 Online 7 December 2005

Figure 1
The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A packing diagram for (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.
acetate and water were added $(80 \mathrm{ml})$. The aqueous phase was extracted twice with ethyl acetate, and the combined organic phases were dried with MgSO_{4}, and the solvent was removed in vacuo. The residue was then purified via column chromatography on silica gel (ethyl acetate/petroleum ether, $1: 4 \mathrm{v} / \mathrm{v}$) to afford (I) in a yield of 15% (m.p. 483 K). Analysis: C 57.56 , H 3.52, N 20.03\%; calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{~S}$: C 57.71, H 3.42, N 19.79%. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR (DMSO, δ, p.p.m.): $10.629(s, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 8.858(s, 1 \mathrm{H}, \mathrm{Tr}-\mathrm{H})$, 8.369 ($s, 1 \mathrm{H}, \mathrm{Tr}-\mathrm{H}$), 7.717, 7.691 ($d, 2 \mathrm{H}, p-\mathrm{Cl}-\mathrm{Ph}-\mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.462, 7.436 ($d, 2 \mathrm{H}, p-\mathrm{Cl}-\mathrm{Ph}-\mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.411-7.023 ($m, 5 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$).

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{~S}$
$M_{r}=353.83$
Monoclinic, $P 2_{1} / n$
$a=9.5139$ (18) \AA
$b=13.681$ (3) A
$c=12.439$ (3) \AA
$\beta=98.828$ (3) ${ }^{\circ}$
$V=1599.9(5) \AA^{3}$
$Z=4$

$$
D_{x}=1.469 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3277
reflections
$\theta=2.2-26.4^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Parallelepiped, colourless
$0.24 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996)
$\quad T_{\min }=0.903, T_{\max }=0.928$
8842 measured reflections

> 3279 independent reflections 2449 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.031$
> $\theta_{\max }=26.4^{\circ}$
> $h=-9 \rightarrow 11$
> $k=-11 \rightarrow 17$
> $l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.104$
$S=1.02$
3279 reflections
221 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0499 P)^{2}\right. \\
& \quad+0.5099 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

S1-C3	$1.740(2)$	N3-C3	$1.415(2)$
S1-C11	$1.7579(18)$	N4-C11	$1.298(2)$
N1-C2	$1.314(3)$	N4-C4	$1.393(2)$
N1-C1	$1.351(3)$	N5-C11	$1.354(2)$
N2-N3	$1.367(2)$	N5-C12	$1.408(2)$
N3-C2	$1.337(2)$		
C3-S1-C11	$87.29(9)$	C11-N5-C12	$128.22(17)$
C2-N1-C1	$102.45(17)$	N2-C1-N1	$115.7(2)$
C1-N2-N3	$101.80(17)$	N1-C2-N3	$110.7(2)$
C2-N3-N2	$109.34(16)$	C4-C3-S1	$112.29(13)$
C2-N3-C3	$130.37(18)$	C3-C4-N4	$113.33(17)$
C11-N4-C4	$111.76(15)$		
N2-N3-C3-C4	$78.5(3)$	C12-N5-C11-N4	$-10.5(4)$
C3-C4-C5-C10	$-173.1(2)$	C11-N5-C12-C17	$14.8(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5-\mathrm{H} 5 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.83(3)$	$2.17(3)$	$2.990(2)$	$170(2)$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.93	2.87	$3.605(2)$	137

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y-1, z$.
The amino H atom was located in a difference Fourier map and refined isotropically, with the distance restraint $\mathrm{N}-\mathrm{H}=0.83$ (3) \AA. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

organic papers

SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20172030).

References

Arcadi, A., Attanasi, O. A., Guidi, B., Rossi, E. \& Santeusanio, S. (1999). Eur. J. Org. Chem. 11, 3117-3126.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Misra, R. N., Xiao, H. Y., Kim, K. S., Lu, S. F., Han, W. C., Barbosa, S. A., Hunt, J. T., Rawlins, D. B., Shan, W. F., Ahmed, S. Z., Qian L., Chen, B. C., Zhao, R. L., Bednarz, M. S., Ranadive, S. A., Sack, J. S., Tokarski, J. S., Pavletich, N. P., Lee, F. Y. F., Webster, K. R. \& Kimball, S. D. (2004). J. Med. Chem. 47, 1719-1728.
Shao, L., Hu, Y., Zhou, X., Zhang, Q. \& Fang, J.-X. (2005). Acta Cryst. E61, m1269-m1271.
Shao, L., Jin, Z., Liu, J.-B., Zhou, X., Hu, Y. \& Fang, J.-X. (2004). Acta Cryst. E60, o2517-o2519.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

